THE CONTROL OF MYOPIA
A rationale for a functional approach

Merrill D. Bowan, O.D.*

BIOGRAPHICAL SKETCH
Dr. Merrill Bowan is a developmental optometrist in private practice in Oakmont and Russellton. He studied pre-optometry at Geneva College in Beaver Falls and is a 1965 graduate of the Illinois College of Optometry in Chicago, Ill. After serving three years in the Navy as an optometrist at Parris Island, S.C., he assumed an office in Oakmont, Pa. Dr. Bowan was Director of Perceptual Therapy at the Pace School and served as chairman of the Committee on Visual Training and Development of the Pennsylvania Optometric Association. He is currently consultant to the Title I funded Perceptual Therapy Program at the Bradley Center in western Pennsylvania which is in its third year of operation.

* Oakmont, PA

ABSTRACT
This paper shall present, in a question and answer format, a short review and documentation of the current understanding of the nature and control of progressive myopia taken from ophthalmological as well as optometric literature. The primary intent of this paper is to inform parents of the merits of a functional approach to myopia control.

Q. Who are likely candidates for nearsightedness?
A. Since 1813, observers and researchers have associated a relationship between myopia and the reading process. Cohn, in 1867 found increasing myopia in school populations from kindergarten through graduate and professional schools. Also, a study of the Japanese population from 1913 to 1966 shows a strong relationship between educational level and increasing levels of myopia. The Japanese have followed the development of myopia in great detail over the years. Interestingly, there is a data break during the war years with a surprising decline in myopia once the data resumes in 1948. A highly similar progressive pattern has been established once again, apparently coinciding with the reestablishment of their societal patterns.

Therefore, it appears that in societies where there is emphasis on educational achievement, people are exposed to an environment that is in some way conducive to progressive myopia. Conversely, it has been noted that among school dropouts, myopia is rare.

Q. At what age does myopia begin?
A. Years ago, myopia usually developed at age 12-15, leading some researchers to believe it was associated with changes at puberty, and thus was essentially a delayed response to heredity. This pattern is no longer seen. Myopia is now beginning at much younger ages, as young as 5 to 6.

Most examiners in clinical practice have seen the largest percentage of beginning myopes at ages 8-10. Additional clusters of beginning myopes appear at ages 13-15 and 18-21. These findings seem to correspond to shifts in demand of nearpoint tasks: the switch in the later part of fourth grade from learning to read (1st through 4th grade) to reading to learn. Junior high schools emphasize greater independent study and increased volume of reading; and college level demands and/or an occupational emphasis on additional nearpoint work may account for these changes.

Q. What causes myopia?
A. After years of debate, it seems clearer than ever that sustained accommodation (focusing) is the primary stimulus to a stretching of the scleral fibers; the eye gradually lengthens, producing the nearsighted condition.
Heredity was long suspected to be the primary causal factor, but great inconsistencies in the age of onset and the frequent lack of myopia in the family genetic structure tends to rule this out in most cases. A few infants are born highly myopic either with or without immediate hereditary factors. However, this is an extremely small segment of a myopic population.

Recent research indicates that, in studies on primates (monkeys and chimpanzees), constricted visual space creates myopia and axial length increase in the animals and that drug-induced paralysis of the focusing mechanism prevents this ocular adaptation. A similar study with atropine (a muscle-paralyzing drug) in humans yielded decreased amounts of myopia in the subject's atropinized eye while rather large increases in myopia occurred in the non-atropinized eye. The test condition was then reversed and the eye that had previously become progressively more myopic actually became less myopic under drug influence, and the previously improved eye now became progressively more myopic. Other studies have also shown that atropine-like control is effective (Emphasis added.) More recently, several experts have shown that the eyeball does not adhere to a rigid, genetically-governed growth pattern, but is a tissue system with the plasticity to compensate for many variations in the optical elements.

There are other suspected causes of myopia, but their incidence is thought to be a minor fraction of the total nearsighted population.

Ultimately, two very significant considerations generating the controversy over the cause and the lack of progress in using myopia prevention methods must be that human research is expensive to perform and difficult to adequately control; and that there is also a very unobjective and human trait among practitioners and researchers to consider only evidence that has come from within their own discipline.

Q. Why has the cause of myopia not been understood before now?
A. The theories underlying the control of myopia actually have existed for decades, at the least. However, they have not been popular ideas. All in all, there is no good reason why prevention of myopia has not progressed further in its practice than it has.

Then, too, it is apparent that some influential authors have either overlooked or ignored valuable research available in the literature at the time they published their works. Unfortunately, their opinions were received by unquestioning readers. However, even Duke-Elder himself concluded and hinted that genetics did not explain the whole picture: "...the realization of these potentialities [i.e., genetic influences on myopia] depends on the environment." (Emphasis added.) More recently, several experts have shown that the eyeball does not adhere to a rigid, genetically-governed growth pattern, but is a tissue system with the plasticity to compensate for many variations in the optical elements.

Q. How do we prevent, retard, or arrest myopic progression?
A. The arrest rate for atropinization is high. This method has serious drawbacks, however, since atropine can be lethal. Bifocal lenses must be used for reading if both eyes are to be treated because the focusing mechanism becomes artificially paralyzed. However, the atropine method can be considered somewhat academic. We find that bifocals alone, set high up in the corrective lens, can result in an arrest rate of 66% or more in a similar a

The elimination of atropine results in an elimination of any hazard or mishap from the patient's control of the drug with only a slight degree of reduction in benefit to the test (or clinical) group. We also find that bifocals have been recommended as the therapy of choice by medical and physiological researchers in other studies and texts.

Studies have also shown that the use of contact lenses tends to arrest the progression of myopia although the method is not well understood and several possible reasons have been suggested.

Q. What other factors are involved in myopia and myopia control?
A. The person who is myopic or who is susceptible to myopia is making a total response to the stress of the near-centered task. Therefore, the whole organism is involved and any stress factors may aid the adaptation into
myopia. Because of this, we find emotional aspects reflected in his adaptation and contributing to its progression.64,65

Also, there has been renewed interest in the nutritional status of myopes. Certain vitamin and mineral deficiencies that directly affect the internal pressures of the eye have been associated with those who are becoming progressively more myopic.66,67

Lastly, the effects of systemic disease in the appearance of sudden and large amounts of refractive error is widely known clinically and may relate to syntoxic or catatotic hormone release as a result of the systemic stress.68

Because of the possibility of any or all of these factors being present in any specific case, there can be no certainty that a functional approach will work. As Dr. Leo Manas states in his textbook, Visual Analysis, "It is obvious that often we cannot be certain as to the precise etiology [cause] of a particular myopia. However, the functional approach has been the most fruitful in the prevention, alleviation, and stabilization of myopia. It is for this reason this approach is emphasized."69 We must provide the best of professional care with a positive, nurturing environment.

SUMMARY

Q. Who are likely candidates for nearsighteness?
A. Students who like to read and adults who perform intense near work.

Q. At what age does myopia begin?
A. The great majority of myopes begin to develop and progress between ages 6 and 21. Myopia does begin at later ages.

Q. What causes myopia?
A. There are several causes. The primary factor of concern in preventing, arresting or retarding progressive myopia is accommodative (focusing) spasm.

Q. Why has the cause of myopia not been understood before now?
A. The theories actually have existed for decades and new data refutes old concepts. Some authors have not reported these factors or taken them into consideration. There is also a reluctance to change concepts.

Q. How do we prevent, arrest, or retard myopic progression?
A. Atropine drops and others have been used but are impractical in most cases. Reading lenses, bifocals and/or visual therapy have been highly successful. Contact lenses have some therapeutic effect and are occasionally recommended for this reason.

Q. What other factors are involved in myopia and myopia control?
A. The relationship of emotions and nutrition to myopia has been reported in the literature and their roles are becoming clearer. Systemic disease has also been known to play a role in refractive problems. But, as Dr. Leo Manas states in his textbook, Visual Analysis, "It is obvious that often we cannot be certain as to the precise etiology (cause) of a particular myopia. However, the functional approach has been most fruitful in the prevention, alleviation and stabilization of myopia. It is for this reason that this approach is emphasized."

REFERENCES

1. Ware, James; "Observations relative to the near and distant sight of different persons." Phil. Trans. Royal Soc., Part 131-50, 1813
2. Cohn, H; Untersuchunger der Augen von 10,060 Schulkinder, nebst Vosschagen zur Verbesserung der den Augen nachteiligen Schuleinrichtunger, Leipzig, Verlag von Freidrich Flelaches, 1867
3. Quoted in Kelly, TSB; Butler, D; "The Present Position of Contact Lenses in Relation to Myopia" British Journal of Physiological Optics 26, 33 (1971)
4. Holm, Stig., The state of ocular refraction among the Palenegrides of Gaboon, in French equatorial Africa, Acta Ophthalmologa, Supplement v.15, 1937
5. Young, FA; Leary, GA; Baldwin, WR; West, DC; Box, RA; Harris, K and Johnson, C; "The transmission of refractive errors within Eskimo Families" American Journal of Optometry and Archives of the American Academy of Optometry, 46 (9):676-685, 1969
6. The Christian Medical Soc., Medical Group Mission in its supply request lists for Dominican Republic Clinics, refer to virtually no need for myopic corrections. Apartado #510, Santo Domingo, Dominican Republic (U.S. government publications indicated a literacy rate in the D.R. of 35-40% as of 1975, Backiround Notes #775p)
7. Young, FA; The development of simple myopia, The Eye, Ear, Nose and Throat Monthly; 47, April, 1968.
12. Young, FA; op. cit., 1968
13. Holm, S; op. cit., 1937
15. Hayden, R; Development and prevention of myopia at the United States Naval Academy, Archives of Ophthalmology 25(4): 539-547, 1941
17. Young, FA; op. cit. 1968
21. Steiger, A; Die Entstehung der spharischen Refraktiomen des menschlichen Augens. Berlin, S. Karger, 1913
23. Young, FA; An estimate of the hereditary component of myopia, American Journal of Optometry and Archives of the American Academy of Optometry 35(7): 537-545, 1958
24. Young, FA; etal; op. cit. 1969
27. Young, FA; op. cit. 1968
33. Young, FA; Op. cit. 1968
34. Luedde, WH; Monocular Cycloplegia for control of myopia, American Journal of Ophthalmology 15(7) :603-609, 1932
35. Gos tin, SB; Prophylactic management of progressive myopia, Guildcraft 37(7):5-15, 1963
37. Kelly, TSB; Chatfield, C; and Tustin, G; Clinical assessment of the arrest of myopia, British Journal of Ophthalmology 59:529-535,1975
38. Young, FA; op. cit. 1968
39. Dunphy, KB; etal; op. cit. 1968
41. Parnell, RW; Sight of undergraduates; loss of visual acuity, British Journal of Ophthalmology, 35:467-472, 1951
44. Sorby, A; Benjamin, B; Sheridan, M; Refraction and its components during the growth of the eye from the age of three, Medical Research Council Report Series No.301, London, Her Majesty's Stationery Office 1961
46. Bedrossian, R.; Young, FA; the development and control of myopia in humans and subhuman primates, Conlacto 19 (6): 16-31, 1975
47. Kelly, TSB; et al; op. cit. 1975
48. IBID, 1975
49. Oakley, K; Young FA; Bifocal control of myopia, American Journal of Optometry and Physiological Optics, 52(1):758-764, 1975
50. Young, FA; op. cit. 1968
53. Tait, HF Textbook of Refraction, WB Saunders Co. 1951
54. Pascal II from Studies in visual optics, St. Louis, CV Mosby Co., pp.285-287
55. Quoted in Kelly TSB; et al; op. cit. 1971
56. Young FA op cit 1968
57. Kelly TSB et al op cit 1975
58. Dunphy KB op cit 1970 p.296
60. Gregg, JR; Parents' Guide to Children's Vision, Public Affairs Pamphlet No. 399.N.Y.,p.9
61. Hayden, H; op. cit. 1941
62. Griffin, JR; Binocular Anomalies; Procedures for Vision Therapy, Professional Press, 1976, p.123, Chapter 12, Chapter 13
63. Tsvetkov, VL; op. cit. 1972
65. Young, FA; Myopia and Personality, American Journal of Optometry and Archives of the American Academy of Optometry, 44(3): 192-201, 1967
66. Lane, BC; Calcium, Chromium, Protein, Sugar and Accommodation in Myopia, Documenta Ophthalmologica Proc. Series (The Hague, Netherlands) in Press August 1980
68. Selye, Hans; Stress Without Distress, N.Y., Lippincott and Crowell, 1974, Chapter 1

Journal of Optometric Vision Development, Volume 12, Number 2, June, 1981,